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ABSTRACT 

The possibility of using the Navy  Navigational Satellite System for position 
fixing of supersonic a i rcraf t  (speeds up t o  Mach 2. 7) is examined. The effects of 
e r r o r s  in required input data on the computed position of the aircraft  are determined 
for  various pass angles of the satellite with respect to the aircraft .  Results indicate 
this system could be a valuable aid to supersonic a i rcraf t  navigation. 
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FOREWORD 

A s  air traffic along the major a i r  routes of the world increases,  separation 
standards for  commercial  aircraft  will  be reduced further and further. This r e -  
duction wil l  require greatly increased accuracy in a i rcraf t  navigation equipment . 
If the ai rcraf t  concerned a r e  supersonic, with speeds up to  about Mach 2.7, the 
navigation problem becomes more acute. This thesis is concerned with the study 
of the Navy Navigational Satellite System a s  a possible aid in the solution of this 
problem. This system, heretofore, has been used primarily for  fixed o r  slow- 
moving earth-bound vehicles and has yielded excellent resul ts  with these type 
craft. If used with high-speed aircraft ,  additional and more accurate data a r e  
required. This study determines the effects of e r r o r s  in this data on the accuracy 
of the computed position of a supersonic aircraft  for  several  flight paths. 
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CHAPTER I 

INTRODUCTION 

With the advent of commercial aircraft  capable of flying at supersonic 
speeds, the problem of accurate navigation becomes increasingly difficult, 
particularly in the heavily-traveled regions over the North Atlantic. 
to meet this increasing demand for  airspace in the North Atlantic region, 
separation standards (Reference 7) have recently been reduced to 90 n. miles 
la teral  (cross-track) separation, 1,000 ft. vertical separation and 15 minutes 
longitudinal (along track) separation. 
navigation accuracy, particularly for supersonic aircraft ,  many types of 
navigation systems and combinations of navigation systems a r e  being examined 
in order  to determine the system o r  systems most suitable for use with 
commercial supersonic aircraft .  
evaluation of these systems, in addition to accuracy, a r e  cost, present 
availability, reliability, coverage area,  etc. One particular navigation system 
being examined for these purposes is the Navy Navigational Satellite System. 
This system has been used successfully for several  years to enable fixed o r  
slow-moving earth-bound stations to determine their position accurately. 
tests have shown that this system could also be used by aircraft to determine 
position if the aircraft  velocity and altitude a r e  known to a high degree of 
accuracy. 

In an effort 

To meet these demands for increased 

Factors that must be considered in the 

Recent 

The purpose of this thesis is to determine the accuracy with which a 
supersonic aircraft  can determine i t ' s  position using the Navy Navigational 
Satellite System with given e r r o r s  in the required input data which define the 
motion of the satellite and the aircraft .  
elements defining the satellite's position and motion and the aircraft  speed, 
heading, and altitude. 

These input data consist of the orbital 

The operation of the system is simulated by a digital computer program. 
The general  approach is to define a particular satellite orbit and a particular 
flight path for a supersonic aircraft .  
make in the actual flight (assuming no imperfections) a r e  determined first .  
Then, the position of the aircraft  is computed, based on input data which i s  

The measurements the aircraft  would 
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cor re r t ,  except for one  param-eter t h r t  is perturbed hy a given e r r o r .  

way, the sensitivity of the accuracy of the position determination to the various 
e r r o r s  is determined. 
flight paths--one for which the satellite is just above the aircraf t ' s  horizon 
(low satellite pass angle), a second for intermediate pass angle, and a third for 
which the satellite passes almost directly over the aircraft  (pass angle near 90'). 

In this 

This procedure is carried out for three separate aircraft  

Because the actual satellite orbits a r e  essentially circular, polar orbits, 
the digital computer simulation considers the satellite orbit to be a perfect 
circular,  polar one. 
six orbital elements used in the simulation; these a r e  right ascension of the 
ascending node, argument of perigee, inclination of the orbital plane, eccentricity, 
semi-major axis, and time of perigee passage (See Figure 1). 
inaccuracies in the knowledge of these elements a r e  considered by adding, one 
at a time, a given e r r o r  to a particular orbital parameter and then, the aircraft 
position is computed using correct input data except for the perturbed value of 
that particular orbital element. 
this particular e r r o r  gives an indication as to how accurately this parameter 
should be known. 
eccentricity is zero, the argument of perigee is arbitrary,  and the semi-major 
axis equals the radius of the orbit. 
considered and i t ' s  orbital plane is somewhat arbitrari ly chosen to coincide with 
the Greenwich meridian plane near the time it is to be in sight of the (hypothetical) 
aircraft  . 

The satellite position and motion a r e  determined from the 

The effects of 

The e r r o r  in computed position resulting from 

For a perfect circular,  polar orbit, the inclination is 90°, the 

For this simulation, only one satellite is 

The aircraft in the simulation is constrained to fly at a constant speed of 

1,800 statute miles per hour,  constant heading, and constant 70,000 feet 
altitude. 
a i rcraf t  has reached its planned altitude, its velocity and altitude a r e  likely to 
remain essentially constant during as short a period as the satellite wi l l  be in 

view of the aircraft .  
the heading the actual aircraft  would have at the three corresponding stages of 
i t ' s  flight across  the North Atlantic from New York to London. It is noted again 
that only one satellite orbit is considered in the simulation and the (hypothetical) 
a i rcraf t ' s  position,p, is  moved to correspond to the starting position of each of 

the three  flight paths. 
speed, heading, and altitude; these a r e  expressed in the simulation as  the east 
component of velocity, north component of velocity, and altitude. The procedure 
for determining the effects of e r r o r s  in these quantities on the computed position 
of the aircraf t  is exactly the same as that followed for errors in the knowledge of 
the orbital  elements. 
intended to be in line with the accuracy to which this input data is likely to be known 
in an operational situation. 

It is felt that this is not an unreasonable restriction because, once the 

The three separate flight paths considered take into account 

The input data required to define the aircraf t ' s  motion a re  

The values chosen for the e r r o r s  in vehicle motion a re  

3 
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CHAPTER I1 

OPERATION O F  THE NAVY NAVIGATIONAL 
SATELLITE SYSTEM 

In this chapter, the operation of the Navy Navigational Satellite System wi l l  

be discussed. 
The Navy Navigational Satellite System uses the phenomenon known as the 

Doppler effect to enable a receiving station to determine i t s  position based on i t s  
measurements of a radio frequency signal transmitted by an orbiting artificial 

satellite. 
The Doppler effect results from the relative motion of the transmitter of a 

signal with respect to the receiver (or vice versa) which detects the signal and it is 
manifested by a shift in the frequency received even though the transmitter frequen- 
cy may remain fixed. The equation describing the Doppler effect can be written 

where f R  is the frequency of the signal detected by the receiver,  f t  is the trans- 
mit ter  frequency (constant fo r  this system), 5. is the velocity of the transmitter 
with respect to the receiver (or  vice versa), and c is the speed of light. 

equation does not consider the constant phase lag due to propagation time; this is 

equal t o  2, where d 

t = t If there is no relative motion of the transmitter with respect to the re-  
ceiver, then the Doppler effect (shift) is not in evidence. 

This 

2nf d 
is the distance between the satellite and aircraf t  at 

C 0 

0' 

The Navy Navigational Satellite System is set  up so that each of the satel- 
l i tes (there a r e  four in evenly spacedorbital planes) transmits a stable radio fre-  

quency signal of frequency f t  = 400 mc. which has superimposed on it timing mark- 
e r s  that a r e  transmitted at precise two minute intervals. The receiving station 

(aboard the aircraft)  receives the Doppler-shifted signal fR from the particular 
satellite in view and mixes this signal with a reference oscillator signal of frequency 

f to  obtain a beat frequency fG - fR, where f is chosen to be grea te r  than any G G 
expected value of fR. The actual measurements used by the receiving station in 

determining its position are the number of cycles of the f - f signal received 
between the t imes of reception of consecutive t ime markers.  The number of 
cycles counted between the t imes of reception of the t and t 1 timing markers  

can be expressed as 

G R  

n n + l  

5 



- - (fG - fR)  dt Nn, n+ 1 Jtn + dtn 

where i tn  represents the time required for the signal Containing the tn timing 
marker  to travel from the satellite to the aircraft;  a s imilar  definition holds for  

dtn+ 1. Expansion of this equation yields 

n t n+ l  + dtn+1 n tn+l + d t n + l  
fR  dt 

tn + dtn 
f G  dt - 

Nn, n+ 1 = s  tn + dtn 

tn+ 1 + btn+l  
n 

Because the number of cycles received by the receiver between the t imes of 
reception of the t and tn+l  timing markers  is equal to the number of cycles 
transmitted between the tn and t 

n 
timing markers ,  the integral n+ 1 

t t 
r n + l  +6 tn+1  P n + l  

f t  dt = constant 
J tn+dtn  fR dt = -1, n 

Therefore, 

where f 
expression takes the form 

and f t  a r e  constants and (t n + l  - t n ) is equal to 2 minutes. The final G 

where is the position vector of the satellite with respect to the center Of the 
earth at the time of transmission of the tn timing marker  and P, is the position 
vector of the receiving station (aircraft)  with respect to the center of the earth 
at the time of reception of the tn timing marker .  An equation of this form may 
be written for each two-minute interval Over which Doppler measurements 
(counts of cycles) a r e  taken. 

n 

6 
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Figure 2 .  Operation of Navy Navigational Satellite System, 

Writing IFn- Fnl as d (Pn, pn), where P is the (satellite) position corres-  n 
ponding to  F p is the (aircraft) position corresponding to  i5 

the distance between Pn and pn, it is noted, for each two-minute interval, that 

Nn, 
unknowns the quantities d (Pn, pn) and d (Pn + 1, pn + 1). 

and d (Pn, pn) is 

f , and c a r e  constants: this leaves as  G' t 

n' n n' 

+ 
is the measured quantity and f 

The satellite positions Pn and Pn + 1, corresponding to the times 01 transmission 
of the tn and tn + 

data transmitted by the satellite in a manner which is described later.  

leaves only the aircraft  positions p and p, + n 
aircraf t  is known, pn and pn + 

pressed as  latitude and longitude with respect to the equator and the Greenwich 
meridian, respectively. 
is accurately known during the two minute interval, it is possible to express p 
in t e r m s  of p leaving only two unknowns in the equation, i. e. the aircraft  latitude 
and longitude corresponding to p,, the position at the time it receives the tn timing 

timing markers ,  :an be determined by the received station from 
This, then, 

as  unknowns. If the altitude of the 
each represent two unknowns, which may be ex- 

However, if the motion of the aircraft  (speed and heading) 

n +1 

n' 
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marker .  
Even though both fG, and ft a r e  very stable during as short  a time as the 

satellite is in view of the receiving station, it is difficult to determine the essen- 
tially constant difference fG - f t  to the accuracy desired. 
to the above 
ever,  (n = l, 2 , 3 )  and expressing the aircraft  positions p2D p3, and p4 in terms of 
p1 and aircraft motion after tlD the three resulting equations in three unknowns can 
be used to eliminate the term (fG - f ) from these equations. 
the following two basic equations by which the aircraft  position pl (hence p2, p3, and 
p4) may be determined: 

This adds a third unknown 

equation. By taking Doppler measurements over three intervals, how- 

This procedure yields t 

where the subscripts relate to the relevant time markers  tlD t2, t3, and t (t = 
t + 2 minutes, etc.). The aircraft  latitude and longitude corresponding to positions 1 
p2, p3, and p4 are easily determined since the motion of the aircraft  for  the 
time after p1 is known. 

satellites' transmitted signals a r e  phase-modulated with the information necessary 
to perform these computations. 
ments, plus corrections, which serve to define a specific orbit corresponding to 
each timing marker .  This is necessary because the actual orbit of the satellite is 
not perfectly c i rcular  o r  elliptical due to the ellipticity of the earth and to the non- 
uniformity of the ear th ' s  gravitational field (gravity anomalies). 

4 2  

In order that the receiving station can determine the satellites' positions, the 

This information consists of a set  of orbital ele- 

The remaining input data required a r e  aircraft  speed, heading, and altitude, 
which describe the motion of the aircraft  and enable the positions pZD p,, and p4 to 
be expressed in te rms  of the position pl. 

approximately 4 by 6 feet and the maximum component height is about 3 feet. 
cost of the complete receiving station is about $60,000. 
a digital computer aboard that could be used for  the computations required, the cost 
(excluqive of the computer) would be only about $5,000. The antenna required :it the 
receiving station can be fairly small  due to the short wavelength (0. 75 m) of the 
transmitted signals. 
a troublesome drag problem for supersonic aircraft .  

The equipment necessary for the receiving station requires a base area of 
The 

However, i f  there is already 

Even though this antenna is small, it may, however, present 
Study and experimentation 
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could determine more  fully the magnitude of this problem. 
This summarizes  the principles, computations, and equipment which the 

Navy Navigational Satellite System employs in i ts  operation. 
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CHAPTER I11 

DIGITAL COMPUTER SIMULATION 

In this chapter, the details of the digital computer simulation w i l l  be 
discussed. 

The digital computer program can be logically divided into four major parts. 
and N that the Pa r t  1 is concerned with the computation of the N1, 2, N2,  3, 

a i rcraf t  would actually measure if it were flying the defined flight path, given the 
defined satellite orbit. 
subsequent part of the program. Part  2 computes the satellite positions P1, P2, 
P3, and P4 based on input parameters of which one may be perturbed from its 
correct  value for a particular run. Par t  3 determines the aircraft  positions pl ,  
pa, p3, and p4 based on an estimated value of p1 and on the given input data, which 
may contain one parameter that has been perturbed from its correct  value for a 

particular run. 

Nn, n + l ’  
one input parameter is perturbed from it’s correct  value for each performance of 
the program, so the e r r o r  in the computed position of the aircraft  is dependent 
on only one input e r ro r .  

3 ,4  

These computed quantities a r e  not changed in any 

Pa r t  4 then computes the aircraft  position based on the values of 
Pn, and pn computed in Par t s  1, 2, and 3. A s  stated before, only 

11 



A.  COMPUTATION OF DOPPLER MEASUREMENTS 

The operations carr ied out in Par t  1 will  now be discussed. Before the 

computation of Nn, n + l  (n = 1, 2,  3), the data defining the exact positions and mo- 

tions of the aircraft  and satellite a r e  read into the computer. 

the t ime corresponding to satellite position P1 (to = t l ) .  the t ime at which the satel-  
lite passes through perigee, the remaining orbital elements, the aircraft  geocentric 
latitude and longitude at t ime t l ,  aircraft  east and north velocity components, air- 
craft altitude, and the time, ta, at which the geocentric inertial f rame (i - f rame) 
coincides with the geocentric earth frame (e - frame).  
stants a re  set into the computer. 

These data include 

Next, values of needed con- 
A s  given previously, the value of N is n, n + l  

where n = 1, 2 ,  3 for a six minute interval. 

value 
tions 

In the simulation fG, ft ,  C, and ( tncl  - tn) a r e  known. Therefore, the 
's of d (p,, pn) for n = 1, 2, 3, 4 must be computed based on the defined posi- 
and motion of the aircraft  and satellite. Before this is done, the coordinates 

of the position of each craft a r e  referred to  the i-frame. 
because the orbital elements defining the satellite motion a r e  given with respect to  
this frame, and if the vehicle position is  given in spherical coordinates with respect 
t o  the e-frame, it is a very simple matter to  compute its coordinates in the i-frame, 
als 0. 

This f rame is chosen 

Because the satellite orbit (in the simulation) is a circular,  polar orbit, the 
computation of the satellite position coordinates in the i-frame is very straight- 
forward. 

to  the right ascension of the ascending node; the length of the radius vector, rn, 
is also a constant and is equal to the radius of the orbital path. 
responding to  latitude varies as the satellite moves along its path. It is assumed 
in the simulation that the satellite is traveling from south to north when it is in 
view of the aircraft .  

The longitude angle (0 ) coordinate is a constant for each P. and is equal n 1 

The angle cor- 

The angular velocity of the satellite is given by the equation 

N = Mean angular motion = a 

where C; is the gravitational constant, me is the mass of the earth (mass of the 
satellite is ignored), and a is the semimajor axis of the orbit. 
a is equal t o  r. 
given time, the t ime it passes through perigee (t 

elements. 

For  a circular orbit, 
In order to  place the satellite at a particular point in i ts  orbit at a 

P 
is specified as one of the orbital 

Because this is a circular orbit, the argument of perigee is arbi t rary 

12 



and was set  equal t~ zcro degrees in the simulation. 
of the satell i te can be  expressed as en = Na (tn - t ) rad.  

P 
of the satellite a r e ,  therefore, r 
f rame.  

Therefore, the latitude angle 
The position coordinates 

On, and 4 referred to  the geocentric inertial n’ n 

The computation of the positions p. of the aircraft  presents more difficulty 
1 

because, though the aircraft  altitude is maintained constant, the radius of the earth 
changes with latitude and this must be taken into account. 
tude r a t e  a r e  affected by this variation even though aircraft  speed, heading, and 
altitude remain fixed. 
of the earth (Hayford ellipsoid) may b e  written a s  

Both latitude and longi- 

The expression for the radius of the accepted analytic figure 

r cos2 6 r sin2 p 
+ e  = 1  e 

b2 2 a e 

where /3 is the geocentric latitude, r is the radius of the earth at 6, ae  is the radius 
of the earth at the equator, and b is the radius of the earth at the poles. This equa- 
tion may be rearranged to  yield 

e 

r = b (1 - k cos2 p)  -‘I2 e 

a e 2-b2 

ae 
where k is defined to  be 7. 

power se r i e s  of the form (1 - x)-” = l + n  + - 

The square root t e r m  may be expanded into a 

2 n ( n + l )  x +... . 
2 

By eliminating all t e rms  of the power ser ies  which yield magnitudes less  than 1 ft. 
the expression for re may be written as 

In the simulation, b and r a r e  expressed in kilometers. 
tions pl ,  p2, p3, and p4 of the aircraft given i ts  position at t l ,  the values of latitude 
r a t e  and longitude ra te  a r e  computed and integrated piecewise start ing at t l  to  yield, 
eventually, p1 , p2, p3, and p4. It is noted that the position of the aircraft  at t l ,  the 
t ime of transmission of the t l  timing marker is the position read into the computer. 
F i r s t ,  the positions of the aircraft  corresponding to  t2 ,  t3, and t 
then, these positions a r e  adjusted to  account for  the very short t ime required for 
the radio frequency signal to t ravel  f rom the satellite t o  the aircraft ,  dtl, 6t2, etc. 

In order  to  compute posi- e 

a r e  determined; 4 

13 



These adjusted positions a r e  the ones corresponding to  pl ,  pz, p3, and P4. 

In order t o  compute the geocentric latitude ra te  (also the longitude rate),  it 
is necessary t o  know the distance from the center of the earth to  the aircraft ,  rA. 
It has been shown that this distance can be expressed, with an e r r o r  less than 1 f t ,  
as the sum of the altitude of the aircraft  (measured perpendicularly from the surface 
of the earth), hA, and the radius of the earth at the point directly below the aircraft ,  
r Because the earth is, essentially, an ellipsoid and not a sphere, these two dis- 
placement vectors are not coincident (Fig. 3). In the simulation, the latitude on which 
computations are based is the geocentric latitude of the aircraft ,  not the geocentric 
latitude of the point directly below the aircraft  on the surface of the earth. 
lations show that, i f  the latitude of the aircraf t  is used to  compute the theoretical 
radius of the ear th  at the point beneath the aircraft ,  a maximum e r r o r  of less  than 

1 ft. is experienced; therefore,  this approximation is a very good one. 

The geocentric latitude ra te  of the aircraft  can be expressed a s  

e' 

Calcu- 

V n (  cos 6 
"where V is the north velocity component of the aircraft  velocity, 

is the angle 

$ =  re + h~ n 

r 

shown in Fig. 3.  

This t e r m  differs from 1 . 0  by, at most, 5.7 x 

is the radius of the earth, hA is the altitude of the aircraft ,  and e 
In the simulation, the cos b o  t e r m  was considered to  be 1.0. 

and therefore causes an e r r o r  

v, cos 8, 
\ /  

> J /AIRCRAFT 

c--Oa--------I 
Figure 3. Geometry of Aircraft Latitude Motion 
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in north velocity less  than 0 .01  mph. Ever? thsugh both VN aiid hA a r e  considered 
to be constant during the flight, latitude rate changes because the radius of the earth 

varies with latitude. In order  to  determine the change in latitude between t l  and t2 ,  
t 2  and tg ,  and t 3  and t4 ,  this equation i s  integrated piecewise for small  intervals of 

time, i. e . ,  the value of re is considered to be a constant for a small  At. 
in latitude is, thus, determined fo r  the time from t t o  t + At, then a new value of re 
is computed and this procedure is continued until the aircraft  latitude is determined 
for t imes t2 ,  t3, and t4 .  

- 

The change 

Along with each computation for latitude change, the change in longitude is 

determined in a s imilar  manner. The expression for  longitude rate  is 

- -  dXe vE 
dt - (re + hA) cos 

where VE is the (constant) east component of aircraft  velocity. 
also, is changing if VN f 0, the change in longitude must be determined by integrating 
this equation in a piecewise fashion, as for latitude. 
change in longitude is computed f i rs t ,  then the change in latitude is determined. 
These changes a r e  added to  the previous values, and this procedure is repeated until 
the aircraft  latitude and longitude a r e  determined for t imes t2 ,  tg ,  and t4 .  

two of the three  flight paths considered. 

Because p, thus re, 

For each increment At ,  the 

In this 
simulation At was set  t o  1 second because VN, thus x, dP is great in magnitude for 

Because the aircraft  positions pl,  pz, p3, and p4 correspond to  the t imes at 
which the aircraft  receives the timing markers (t 1+ dtl, t 2  + bt2, etc. ) and the 

positions just computed correspond to the time of transmission of the timing markers  
( t l ,  t 2 ,  etc. ), these positions must be adjusted by computing the t ime required for  
the radio signal t o  travel from the satellite to the aircraf t .  This requires that the 
distance between the satellite (at tn) and the aircraft  (at tn  + dt,) be known. 
at the present stage, only the aircraft  and satellite positions at t 
positions a r e  used to  calculate this distance. n 
low satell i te pass angle case (pass angle = sin-' 600 2600 
of 16 milliseconds. Because the aircraft  is traveling at 1,800 mph, the aircraft  w i l l  
t ravel,  at most, about 42 f t .  in the time 6t,; therefore,  the above computed htn may 

be in e r r o r  equal to  the t ime it takes a radio wave to  t ravel  42 ft. (for the worst case).  
This approximation leads to  an e r r o r  in the computed position p 

Because, 
a r e  known, these n 

The maximum dt will occur for the 
13O) and w i l l  be on the order  

on the order  of n 
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which is completely negligible. 
accurately by using the positions of the aircraft  and satellite at the t imes  tn  fo r  the 
computations. 
a r e  computed in the same manner a s  mentioned above. 

Therefore, the values of dtn may be computed very 

The change in latitude and longitude between t imes tn and tn  + dtn 

In this simulation, all  distances a r e  computed using the latitude, longitude, 
and radius vector length of each position with respect to  the i-frame. 
d (P , p ) may be expressed a s  

The distance 

n n  

+ pn2 - 2 r p cos yn 1 l f 2  n n  

where r 
the planar angle between these two vectors. 
cosine law of plane trigonometry. 

is the length of the F vector, pn is  the length of the pn vector, and yn is n n 
This equation follows directly f rom the 

The t e rm cos yn may be written as 

cos y = sin dn sin 6, + cos $n cos pn cos (Bn - AI ) n n 

where $n is the angle between the equatorial plane and the vector Fn (a latitude angle), 
fin is the geocentric latitude of the aircraft ,  8 is the angle from the i-frame X-axis 
t o  the meridian plane containing the satellite radius vector pn, and 

n 
responding (longitude) angle of the aircraft  measured from the XI axis. 
sion is derived from the cosine law of spherical  trigonometry. 

aircraft  is equal to  its longitude with respect to the earth, Ae , plus the angle 

Wie (t - ta) where uie is the constant angular velocity of the earth with respect to 
the i-frame. 

n 
is the cor- 

This expres- 
The angle 3 of the 

n 

n 

At this point, the actual number of cycles counted by the aircraft  equipment 
in each interval between consecutive timing markers  can be calculated, 
of cycles counted between t imes of reception of the tn and t n + l  timing markers ,  as 
given above, is expressed as 

The number 

The value chosen for  fG in the simulation w a s  fG = 400.01 mc. with ft = 400.0 mc. 

It was desired to  make fG as close to  f in frequency as possible in order  t o  reduce 
the number of counts; this was done to  reduce computational e r r o r  (not wanting to  
lose significant digits). The value of ( tn+l  - t ) for  all n is two minutes (the e r r o r  
in t ime between tn+l  - t is held to  less  than 10 microseconds in the actual system). 
Since Pn and pn (for n = 1, 2,  3, 4) have been determined, the computation of num- 
ber  of cycles counted, Nn, n + l ,  takes place. Note that, up to  this point, all input 
data is, essentially, error-free.  From this point on, one of the input parameters 

used may be  in e r ro r ,  as explained previously. 

t 

n 
n 
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B. GENERAt COMPUTATION OF SATELLITE POSITIONS 

Part 2 of the simulation wil l  be discussed here. This section computes the 

satell i te positions PI, Pa, P3, and P in a manner that will allow the input data 
(the orbital  elements) to contain e r rors .  The previous (error-free)  computations 
of satell i te positions allowed the use of greatly simplified equations because the 
(hypothetical) orbit  is circular and polar. Now, with possible e r r o r  t e rms  added 
to the correct  values of orbital elements, the orbit defined by this (perturbed) 
data may not be a polar, circular orbit. Therefore, general equations must be 
used to determine the satellite positions. Firs t ,  the error te rms  a r e  read into the 
computer and added to the correct values of orbital elements. 
to compute the value of mean angular motion, 

4 

Next, it  is necessary 

Then, the mean anomaly 

M = N (t - t  ) r a d  
C P 

is computed for  the t ime corresponding to the transmission of the t ime marker  t . 
n 

Because the mean anomaly normally does not equal the actual angle that the radius 
vector t o  the satellite makes with the l ine of apsides (through perigee), it  is 
necessary to compute this angle f, called the t rue  anomaly, using the value of mean 
anomaly. For small  values of eccentricity, Reference 1 shows that the relationship 
between f and M may be expressed as 

f = M +(2. - $)sin M + ( - - ) s i n  2M +(,$)sin 3M 

where e is the eccentricity and is near  or equal to zero. 
rectangular coordinate system with origin at the center of the ear th  be designated 
with axes X Y Z such that X passes through perigee, Y is also in the 

orbital  plane and 90’ from X 
position of the.satellite in this frame can be expressed as 

Let a right-handed 

op’ op’ op OP OP 
, and Z 

OP OP 
is perpendicular to the orbital plane. The 

Xop = ro cos f 

YOp = ro sin f 

zop = 0 

The value of ro is determined by the equation 

2 a ( 1 - e )  r =  o l + e c o s f  

where a is the semi-major axis of the orbit (See Figure 4). 
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Figure 4. Geometry of Satellite Motion 

Because the x Y Z f rame (OP-frame) may not be oriented in a op’ op’ op 
simple fashion with respect to the i-frame, it is necessary to perform a coordinate 
transformation between the OP-frame and i-frame by means of the rotation matrix 

where 

OP 

Because the satellite is always in the X 

and there is no need to compute 13, m3, and n3. The expressions for  the remaining 
t e rms  in the matrix are: 

Y plane, the Z OP coordinate is zero 
OP’ OP 

1 = cos Q cos w - sin $2 sin w cos i 
l2 = - cos C2 sin w - sin 0 cos w cos i 
1 
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Figure 5. Orbital Elements 0, o, i 
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where 51 is the 

m l  = sin SZ cos w + cos 51 sin w cos i 

m2 = - sin 51 sin w + cos Q cos w cos i 

n1 = sin w sin i 
n2 = cos w sin i 

right ascension of the ascending node, 0 is the argument of perigee, 
and i is the angle of inclination (See Figure 5). 
yields the rectangular coordinates of the satellite position with respect to  the 
i-frame. Because the range difference computations use coordinates of longitude, 
radius vector length, and latitude, it is now necessary to convert from XI, YI, ZI 
coordinates to latitude, longitude, and radius vector length. 

is seen that the following relationships hold: 

This coordinate transformation 

From Figure 6, it 

tan 6 = 3 

Figure 6. Relationship of Coordinates 

The value of r is the same a s  ro, computed previously. 

This summarizes the procedure carried out to determine the positions PI ,  

elements define an orbit other than a perfect circular,  polar orbit; this w i l l  be the 
case for  e r r o r s  in  ei ther i or e. 

and P of the satellite f o r  all cases  including those for  which the orbital P2’ Pg’ 4 
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C. GENERAL COMPUTATION O F  AIRCRAFT POSITIONS 

2 ,  p3, and p based, initially, on an  The computation of aircraft  positions p 4 
estimated position for pl, is the concern of Par t  3 of the simulation. 
tions in the input data defining the aircraft  motion are read into the computer at the 
s tar t  of this  procedure and are added to the known correct  values before computa- 
tion of pl, p2, p3, and p4 is begun. 
to  the navigator, an  estimated value must be used to  s tar t .  
a mere  convenience, the estimated position read into the computer was made to  cor- 
respond to  the estimated aircraft  position at t -not t l +  6tl which corresponds to  pl. 
Starting with this initial position, the changes in latitude and longitude are determin- 
ed between t l  and t2,  t 2  and t 

they must be adjusted in the same manner as in Par t  1; this  t ime, however, initially, 
the estimated positions at t l ,  t2 ,  t3, and t4  a r e  used to  compute the d t n ' s .  

the estimated positions are expected to be within 2 0  or 30 miles of the actual posi- 
tions, this  causes no great difficulty. 
termined, the latitude and longitude of pl ,  fi, and , respectively, are consider- 

ed as the two unknowns in the two basic equations given in Chapter I1 and the posi- 
2, p3, and p are now expressed in terms of Bl and he . tions p 

The perturba- 

Since the actual value of p is not known 
In this simulation, as 

1 

1 

in exactly the same manner as was and t and t 3' 3 4 
done in Part 1. Since these positions do not correspond exactly to  pl, p2. e tc . .  

Because 

Once this set  of pl ,  p2, p3, and p4 is de- 

el 

This is done by 4 1 I 

considering p to  be expressed as p = 0 ,  + ABn and xe = +AXe . This will 
n el  n 

be discussed more fully in the discussion of Par t  4 of the simulation. 
n n 

Because 
the accuracy of the computation of APn and AX depends on the accuracy of the 

initial estimate, there  will be some e r r o r  in the determination of the AB Is and 
Ah 

than 30 miles,  the resulting e r r o r s  in APn and Ax 

source of e r r o r  completely, however, after each correction to B, and x 
computed, the values of ABn and AXe 

on the improved values of pl and he . 
1 

n e 

n 
Is due only to  this  e r ro r .  Since the e r ro r  in the estimated position wi l l  be less  

en 
a r e  small .  To eliminate this 

en 
i s  

e l  
a re  computed again, this t ime being based 

n 
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D. SOLUTION OF THE NAVIGATION EQUATIONS 

In Part  4, the procedure by which the two basic navigation equations a r e  
solved for  8, and X 

of these two equations s ta r t s  with an  estimated value for p 

followed is one of iteration - start ing with the estimated values of 0, and X 

of corrections a r e  computed for p1 and X 

values, yield new values which are closer  to the solution. 
until the corrections come eufficiently close to zero,  at which time the values of 

p, and Xe 

used is Newton’s Method for two equations in two unknowns. 
this  method wil l  now be given. 

is discussed in detail. A s  has been mentioned, the solution 
e l  

and X . The procedure 
el 1 

, a set 
el 

which, when added to the estimated 
el 

This procedure continues 

a re  considered to be the solution of the equations. The particular method 
1 

A brief description of 
Let two equations be given, 

f (x, y) = 0 

g (x, y) = 0, 

from which the unknowns x and y are to be determined. 
for x and y, the corrections Ax and Ay to  the estimated values a re :  

Starting with an  estimate 

where the quantities in the equations are evaluated, initially, by using the estimated 
values of x and y. Substitution into these equations yields values of Ax and Ay which 
a re  added to the estimated values. 
the roots. Now, a new set  of corrections Ax and Ay are computed using the improved 
values of x and y to  evaluate the above expressions. 
the corrections become negligable, at which t ime the values obtained for x and y are 
the solutions t o  the equations. 
equations can be written as 

This resul ts  in an improved pair of values for  

This process continues until 

Following this procedure, the two basic navigation 

The computation of the corrections AS, and AX 
ing expressions: 

require the evaluation of the follow- 
el 
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It is noted that, in order to evaluate these partial  derivatives, it  is necessary to 

develop expressions for acd e n ’  pnil and aP Pns  pn)l for n = 1, 2 ,  3, 4. It is 
Bl a ‘e 1 

simplest to develop the general equation with subscript n and the value of n concerned 
can be sustituted into the general equation to obtain the expression needed. 
the expression for d ( Pn, pn) is written a s  

F i rs t ,  

where w ie 
t e rms  a r e  a s  defined previously. 
e xpr e s s ion yields 

(AT) represents the angle between the e-frame and i-frame and the other 
Taking the required partial derivatives of this 
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a P n  aP 
ap, ap 1 

, expressions for -, 4 , 
a[d(Pna Pn)] 

It is, seen that, in order  to evaluate 

ax 

ap, must be developed. Because p, is equal t o r  +hA,  it can be expressedas  en 
and- e 

L 

= b [ 1 +- "( 1+ C O S  2pn ) +$ (1+coszPn)2]+ h* 
P n  4 

~ 

where pn= p, + Apn (note that when n = 1, ABn = 0). 

of this expression with respect to p, yields 

Taking the partial derivative 

y?IJ - aP11 + 
b 

' This requires the expression for - , which may be written as apn 

a4 ap, ap, 

. In developing this expression, the approximation 
" = 1 + 2  a p p  ) a ( @ )  

a p l  

is used where Atn 5 tn - t,. Substituting this expression into the equation for 

, a @ken) + 
axe 

a p l  
Writing le = Xe + AXe , the expression for can be written as- 

n 1  n ap, 

ap, ap, 
n -  . This expression is developed is zero. Therefore, - - 

axe 1 
where - a h  
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using the approximation 

a p x  ) axe 

861 361 
en =- can be expressed as Therefor e, the quantity 

Because the dtnts a r e  not all equal, the values for the Atn's are not all exactly 
equal. However, because the magnitudes of the d t n ' s  a r e  on the order  of millisec- 
onds and the differences in the 6tn's will be even less, the AtnIs were se t  equal to 
the relevant multiples of 2 minutes in the evaluati'on of the above expressions. 
pointed out again that only p, and Xe 

AXe Is, At Is, etc. a r e  known, within the limitations mentioned previously. 
n 

then, summarizes  the procedures by which the two basic navigation equations are 
solved for P I  and he . 

It is 
a r e  the unknowns in the expressions; the Ap Is, n 

This, 
1 

n 

1 
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CHAPTER IV 

RESULTS OF THE SIMULATION 

A s  stated before, three separate flight paths were simulated by this computer 
program. 
simulated, i. e. for  the start of each particular flight path (start ing time w a s  the 
same f o r  each path), t l J  the satellite was at the same point in it's orbit and i t ' s  
(error-free)  orbital elements were the same. Flight path #1 begins at p = 45'N 
and Xe = 65OW at t ime t l  = 7200 sec  GMT. The total velocity is 1,800 mph, a s  it 
is for  all  three flight paths. The heading is a constant 55 measuring clockwise 
from t rue  north. This value of heading is expressed by setting the north velocity 
component, VN = 1,032.44 mph and the east velocity component, VE = 1,474.47 
mph. A s  for  all three cases, the altitude above the reference ellipsoid is 70,000 ft. 
The second flight path, Flight path #2, s tar ts  at p = 50°N and hel = 45OW at t ime 
t l  = 7200 sec  GMT. The heading in this case is 75' expressed a s  VN = 465.876 mph 
and VE = 1,738.656 mph. Flight path # 3  commences at p = 53'N and he = 2OoW at 
t ime t l  = 7,200 Bec GMT. In this case the heading is 90 from true north; therefore, 
VN = 0. and VE = 1 , 800.00 mph. In all three cases  the time at which the e-frame 

and i-frame a r e  coincident is set  to 0 s ec  GMT. 

F o r  each flight path, the same satellite and satellite motion were 

0 

0 

The effect on the computed position of e r r o r s  in the orbital elements and 
e r r o r s  in the knowledge of the aircraft  motion a r e  determined for  each of the three 

flight paths. 
time. 
is that it is expected that the magnitude of e r r o r  in computed position is a 

function of the satellite pass angle, the angle the position vector from the aircraft  
to the satell i te makes with the horizon. 
pass  angle of about 13 , flight path #2 corresponds to a 27' pass angle, and the 
pass  angle is near 90' for  flight path #3. 

A s  stated previously, only one type of input e r r o r  is considered at a 
The reason three separate flight paths a r e  considered instead of just one, 

Flight path #1 corresponds to a satellite 
0 

The values of e r r o r s  used for the orbital elements a r e  a s  follows: 

A time of perigee = 1.0 sec  
A eccentricity = 0.001 

A semi-major axis 
A argument of perigee = 0.1 degree 

= 1.0 km. 
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E r r o r  Source (magnitude) 

No e r r o r s  
Time of perigee (1. 0 sec)  
Eccentricity (0. 001) 

Semi-major axis (1. 0 km) 
Argument of perigee ( 0 .  1 deg 
Rt. Ascension of 

Ascending node (0. 1 deg) 
Inclination (0. 1 deg) 
East Velocity (3. 5 mph) 
North Velocity (3. 5 mph) 
Heading (4 G n )  
Altitude (1, 000 f t )  

?light Path # 1  

0.019 n. m. 
3.28 
8. 68 
1. 03 
5. 86 

4. 13 

6. 32 
0. 67 
0. 72 
0. 54 
0. 10 

Flight Path #2 

0.018 n. m. 
3. 39 
7. 73 
0. 95 
6. 05 

3. 80 

5. 77 
0.28 
0. 50 
0. 33 
0. 13 

Flight Path #: 

0.007 n. m. 
3. 32 

23.91 
6. 13 
5. 96 

3. 64 

1. 50 
0. 16 
1. 73 
1. 09 
1. 60 

Table 1. Effect of E r r o r s  on Computed Position 
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Graph 1. Variation of Output Error with Errors in Orbital Elements 
(Flight Path #2) 

29 



A right ascension of the ascending node = 0.1 degree 
A inclination = 0.1 degree 

The values of e r r o r s  used f o r  the parameters describing the aircraft  motion 
a r e  based on magnitudes of e r r o r s  likely to be experienced if  an inertial navigation 
system with a 1.5 n. m. / h r  CEP performance figure is used to supply velocity and 
heading information. 
navigation systems chosen f o r  the Boeing 747 commercial a i rcraf t  are inertial  
navigation systems with this performance figure. 
the greatly increased cost, inertial navigation systems of higher quality than this 
would be chosen for  commercial aircraft  unless the cost of inertial navigation sys-  
tems  decreases significantly in the next several  years; this is a definite possibility, 
however. Reference 8 gives several  rules of thumb fo r  determining the velocity 
and heading accuracy of an inertial navigation system when the only performance 
figure given is the n. m. /hour CEP figure; this is the only performance figure the 
author has obtained for  the Boeing 747 system. 
following values of e r r o r s  a r e  those used in the simulation: 

A system of this quality w a s  chosen because, recently, the 

It is unlikely that, because of 

Using these rules of thumb, the 

North velocity e r r o r  
East velocity e r r o r  
Heading e r r o r  (initial) = 4.0 

= 3 . 5  mph 
= 3.5 mph 

The effects of north velocity e r r o r  and east velocity error a r e  considered separately. 
The heading e r r o r  is expressed as  velocity e r ro r s ,  i. e. 
to be in e r r o r  and the total velocity to be correct, new values of east  and north 
velocity a re  computed based on the incorrect heading angle. 
in the north and east velocity values, therefore, a r e  considered to be the e r r o r s  
in velocity corresponding to the heading er ror .  These velocity changes a r e  then 
used to determine the effect of heading e r r o r  on the accuracy of the computed 
position. 

considering the heading 

The changes resulting 

The value used for  altitude e r r o r  is 1,000 ft. 

The results of the digital computer simulation a r e  summarized in Table 1. 

The numbers shown in the table a r e  the e r r o r s  in the computed position of p in 
nautical miles due to the e r r o r  source on the left side of the table. 
e r r o r  i n  p was chosen instead of p1 because p4 is the position at  the end of the 
s ix  minute interval during which the Doppler measurements a r e  taken and therefore, 
is the most recent computed position. 
position of p1 is considered to be the unknown in the basic navigatim equations and 
that p2, p3, and p4 a r e  determined in te rms  of p1 and the motion of the aircraft  
during the s i x  minute interval. 

4 
The position 

4 

It should be pointed out again that the 
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F o r  each flight path, the program was executed once with zero e r r o r  in 

This was done to check the accuracy of the program. 

in the input data and using an estimated initial position that was in e r r o r  by about 
20 o r  30 miles. 

maximum e r r o r  in computed position with zero e r r o r  input, a s  seen in Table 1, 

is only 0.019 n. m. o r  about 115 ft. This e r r o r  probably results from the use of 
approximations, round-off e r ro r s ,  etc. It is felt that this magnitude of e r r o r  is 
completely tolerable and, thus, verifies the validity of the simulation. 

The 

It is noted that the magnitude of e r ro r  in the computed position differs 
little with pass  angle f o r  e r r o r s  in time of perigee, argument of perigee and right 
ascension of ascending node. 

Surprisingly, the e r r o r s  in computed position due to e r r o r s  in inclination 
and east  velocity a r e  l e s s  for  high satellite pass  angle (Flight Path #3)  than for  
lower pass  angles. 

However, for  high satellite pass angle, the e r r o r s  in computed position 
due to e r r o r s  in eccentricity, semi-major axis, north velocity, heading and altitude 
a r e  much greater  than for  low o r  medium pass angles. 

particularly sensitive, at high pass  angles, to e r r o r s  affecting the altitude 
determination of both the aircraft  and satellite as manifested by e r r o r s  in 
eccentricity, semi-major axis, and aircraft altitude. F o r  example, the e r r o r  in 
computed position resulting f rom eccentricity e r r o r  jumped from around 8 n. miles 
fo r  Flight Paths #1 and 2 to nearly 24 n. miles for  Flight Path #3.  

computed position due to aircraft  altitude e r r o r  at high satellite pass  angle 
(Flight Path 3) w a s  over 10 t imes the value for  Flight Paths 1 and 2. 

It appears that the system is 

The e r r o r  in 

The breakdown of position e r r o r  into latitude and longitude e r r o r  reveals 
that, generally, the latitude and longitude e r r o r s  a r e  of the same order  of magni- 
tude, with some exceptions. 
tion e r r o r  resulting from the e r r o r  in the right ascension of the ascending node 
is equal to the e r r o r  in longitude; this is due to the fact that the input e r r o r  "dis- 
places" the satellite longitudinally only, It should be noted that latitude e r r o r  
yields e r r o r  in longitude because longitude ra te  is a function of latitude; thus, 
input e r r o r s  affecting only the latitude of the satellite position cause e r r o r s  in 
longitude of the aircraf t ,  also. 

For example, a t  low satellite pass angle, the posi- 

To determine i f  the e r ro r  in the computed position is related to the input 
1 

e r r o r  in a linear fashion, Flight Path # 2  was run for input e r r o r s  

of those listed in Table 1 and again for input e r r o r s  10 t imes the magnitude of 
those in Table 1. 
e r r o r  would increase K t imes i f  the input e r r o r  w a s  increased K t imes.  

the magnitude 

In other words it w a s  desired to determine whether the output 
The 
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Graph 2. Variation of Output E r r o r  with Errors  in Knowledge of Aircraft Motion 
(Flight Path # 2 )  
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resul ts  of these runs for Flight Path # 2  a r e  given in Table 2 .  The plots of these 

resul ts  a re  shown in Graphs 1 and 2 .  

the orbital elements in Graph 2 shows the resul ts  for e r r o r s  only in the knowledge 
of the aircraft  motion. 

Graph 1 contains the plots for e r r o r s  only in 

In Table 2 and Graphs 1 and 2 it is noted that the output e r r o r s  vary very 
The only exceptions a r e  for e r r o r s  in the nearly linearly with the input e r ro r s .  

knowledge of aircraft  motion that a r e  ii-j the magnitude of the nominal input e r r o r s .  
It i s  believed this apparent non-linearity can be explained by noting the very small  
magnitudes of output e r r o r s  for this set  of input e r r o r s .  

e r r o r  for this set  is 0.  05 nautical miles and when one considers that the e r r o r  in 

computed position with no input e r r o r s  is 0.018 n. m. , it is seen that there  is an  
uncertainty in  the figure fo r  output e r r o r  of about 0.02 n. m. 
values of output e r r o r  obtained in this set  a r e  not reliable due to the fact the 

computational e r r o r  is so great relative to the values computed. With these 
exceptions, however, the output e r r o r s  generally increase linearly with the 
increase in input e r r o r s  for medium satellite pass  angle. 

1 

The maximum output 

This means the 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 
FOR FURTHER STUDY 

Results of using the Navy Navigational Satellite System for a fixed earth- 
bound station, according to  Reference 6,  a r e  e r r o r s  in computed position averaging 
0.13 nautical miles. Comparing this figure with the results shown in Table 1, it 
appears  that the e r r o r s  in the knowledge of the orbital elements in the actual oper- 
ational system are, generally, much less than the magnitudes used for the runs 
whose results appear in Table 1. It would seem that, in general, no serious prob- 
l em exists with the accuracy of this ( orbital element) input data for high-speed 
aircraft, except that, for  high satellite pass angles, e r r o r s  in eccentricity and 
semi  -major axis become particularly troublesome. 

Judging from the results obtained with e r r o r s  in the knowledge of the a i r -  

craft 's  motion, which are  the magnitudes of e r r o r s  likely to result from using a 

good inertial navigation system for  this information, the Navy Navigational 
Satellite System could be of definite benefit in giving accurate position fixes of 
supersonic a i rcraf t ,  although there is some degradation a t  high satellite pass angles. 

There a re ,  however, some problems which may a r i se  for high-speed aircraft 
use of this system which should be mentioned. One of these difficulties is locking 
onto the satellite's transmitted signal; this may be difficult in a high-speed aircraft ,  
particularly, i f  it is in maneuvers during the satellite pass. Another problem is 

that, at present, there  a r e  only four satellites in orbit and this may require a wait 
of up to  an  hour and a half to obtain a position fix; this would make this system of 
little value for  some flights of less  than an hour o r  two in duration. It i s ,  however, 

entirely possible that the number of satellites may be increased; estimates a r e  that, 
if  eight evenly-spaced satellites were used instead of four, the maximum wait would 
be only about 15 minutes, which would make this system a very useful  one for high- 
speed aircraft .  

No attempt has been madein this thesis to  determine the benefits of using 
a n  optimum filtering technique fo r  combining the output of the Navy Navigational 
Satellite System with the aircraft's inertial navigational system. Such a study 

would help in more fully evaluating the benefits of the Navy Navigational Satellite 
System fo r  use with high-speed aircraft .  
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APPENDIX 

COMPUTER PROGRAM AND FORMAT 

OF INPUT DATA 

The format of the input data cards to the program and the description and 

units of the variables wi l l  now be given. 

Card 1: 

TO, 

ATP , 

AA@, 

AECC, 

ASALT, 

ARAAN, 

AINCL, 

!2mLg 

BETA ( 1 1, 

LAM(11, 

AVE , 

AVN , 

AHA , 

TT, 

Card 3: 

DTMP, 

DECC, 

t ime satellite is a t  position P 

time of perigee passage of satellite, in seconds from 0 hr .  GMT 

argument of perigee , in degrees 

eccentricity of orbit, s e t  equal to 0.0 

satellite altitude at equator, in nautical miles, set  equal to 600.0 

right ascension of the ascending node, in degrees 

inclination of the orb i t ,  in degrees, set  equal to  90.0 

in seconds from 0 hr .  GMT 1’ 

actual geocentric latitude of aircraft  a t  TO, in degrees 

actual longitude of aircraft a t  TO measured eastward from 
Greenwich, in degrees 

actual east velocity of aircraft with respect to  the earth, in 
st.  miles per  hour 

actual north velocity of aircraft  with respect to  the earth, in 
s t .  miles per  hour 

actual altitude of aircraft ,  in ft. 

t ime at  which e-frame coincides with i-frame, in seconds 
from 0 hr. GMT 

e r r o r  in t ime of perigee, in seconds 

e r r o r  in eccentricity of orbit 
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DSMA , 

DAW 
D G ~ M N ,  

DINC, 

e r r o r  in semi-major axis, in km. 

e r r o r  in argument of perigee, in degrees 

e r r o r  in r t .  ascension of the ascending node, in degrees 

e r r o r  in orbit inclination, in degrees 

Card 4: 

DVE , e r r o r  in knowledge of aircraft  east velocity, in st .  miles pe r  hour 

DVN , e r r o r  in knowledge of aircraft  north velocity, in st. miles per 
hour 

DHA, e r r o r  in knowledge of aircraft  altitude, in f t .  

BIE , estimated value of BETA(1) at TO, in degrees 

LIES, estimated value of LAM(1) at TO measured eastward from 
Greenwich, in degrees 

Next, a n  outline of the computer program is given. 

Also included in this appendix is the complete computer program listing. 
The language of this program is MAD. 

38 



OUTLINE OF COMPUTER PROGRAM 

Compute solution of 

Basic Navigation Equatbns 

Part I 

Input card no. I 

Satellite Positions 

PI’  p2’ p3, p4 

Input card no. ‘L 

Compute Actual 
Aircraft Positions 
PI, PT P3, P4 

Compute Doppler Counts 

lnput u r d  no.3 

Compute Satellite 

Positions: PI, P2 , P3, P4 

with possible errors in 
orbital elements 

READ, PRINT 
Input card no. 4 

Positions pI , $, Py P4 
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D I M E N S I O N  T H E T A ( S ) r R ( 5 ) , P H I ( 5 ) , B E T A ( 5 ) , L A N ( 5 ) ~ D T ( 5 ) ~  
1 A L A M ( 5 ) , A I L G ( 5 ) r A L A T ( 5 ) , D ( 5 ) r N C ( 5 ) , T A ( 5 ) , C S R ( 5 ) , C S T H T ( 5 ) e  
Z C S P H ( S ) , C B E T A ( S ) , C L A M ( 5 ) , C R H o ( S )  

l R L A T ( S ) , R L A M ( 5 ) , F B E T A ( 5 ) r F L A M ( 5 ) , E l A T ( 5 ) , E L A M ( 5 ) ,  
2TOTERR(5),RH0(5),DCT(5) 

D I M E N S I O N  D B ( S ) , D L ( 5 ) r D R ( 5 ) , D X C ( 5 ) , D L O B ( 5 ) ~ D D D B ~ 5 ) ~ D D D L ( 5 ) ~  

D I M E N S I O N  P R B ( 5 ) , P B B ( 5 ) , P L B ( 5 )  
INTEGER 1 9  J,K 
R ' A  
GMEml 4076 3 9 E  1 6  
K M T F f r 3 2 8 1  
F T K W o  3 0 4 8 E - 3  
H P H f F S ~ l o 4 6 7  
DTR= 1 7 4 5 3 2 9 3 E - 1  
RTDz57.  2 9 5 7 8  
R E P s 6  356 9 12 
REE.63780 388 
M P H K H = l o 6 0 9  
NMTFT=6080.  
W IE.7. 2 9 E 4  
C+30 3 7 2 6 7 E - 3  
CL1299793.0  
SMA=REE*KMTFT+ASALT*NMTFT 
A3=SMA*Po 3 
M2M=GME/A3 
AMM=SQRT. (M2M)  
I ANG- A R A A M D  t R  
THETA( l ) = I A N G  
THETA( 2 ) m I A N G  
THETA( 3 ) = I A N G  
THETA ( 4) = I A N G  
I DTN-SWA+FTKM 
R (  1 I =  I D T N  
R ( Z ) - I D T N  
R (  3 ) =  I D T N  
R( 4 1 = I DTN 
EA=AAOP*DTR 
P H I (  l ) = A M M * ( f O - A T P ) + E A  
P H I ( Z ) = A M M * (  TO+lZO.-ATP)+EA 
PH1(3) tAMM+(f0+240. -ATP)+EA 
P H I (  4)=AMM*( T0+360.-ATP)+EA 
R'A 
KKK=l. - (REP/REE)*(REP/REE) 
K l * K K K / 4  
K2* (3 . *KKK+KKK) /32 .  
AVE =AVE*MPHT FS 
AVN-AVNWPHTFS 
BNUM=AVN*FTKM 
LNUM=AVE+F TKM 
K - 0  
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B E T A ( l ) = B E T A ( l ) * D T R  
L A M ( l ) = L A M ( l ) * D T R  
S-BETA( 1) 
L-LAM( 1) 

AAA T ' H  ST1, FOR I = O r  1, 1.GE.120 
BDNM-ERAD.(B)+AHA*FTKM 
LDNM=BDNM*COS.(B) 
L-L+( LNUMYLDNM 1 
B-B+( BNUMIBDNM) 

W * R  KoE.120 
ST 1 K-K+l  

BETA( 2 1-8 
LAM( 2 ) - L  
T'O AAA 
O'R K.E.240 
BETA(3 ) -8  
L A M  ( 3 ) = L  
T'O AAA 
O'E  
BETA( 4 )  =E! 
L A M ( 4 ) = L  
E *  L 

RB=BETA( J) 
BBB T @ H  ST2, FOR J O l ,  l e  J.GE.5 

RDS-ERAC.fRB)+AHA*FTKM 
I F E F W I E * ( T O + (  J-l.)+120.-TT) 
L IF=LAM(J )+ IFEF 
SP-PHI (J)  
SR-R( J) 
AB=BETA( J)  
LD=THETA(J)-LIF 
C C T ~ ~ S I N . ~ S P ~ * S I N . ~ A 6 ~ ~ + ~ C O S ~ ~ S P ~ * C O S . ( A 6 ~ * C O S ~ ~ L O ~ ~  
DSK-(SR-RDS)*(SR-RDS)+2.*SR*(l.-CGT)*RDS 
DT( J)=SORTa(DSK)/CL 
ALAU(J)=LAM(J)+(AVE*DT(J)*FTKM)/ (RDS*COS.(AB))  
AILG(J)-ALAM(J)+IFEF+WIE*DTfJ) 
ALAT(J )=BFTA(J )+ (AVN+DfO+FTKM) /RDS 
ALA=ALAT(J) 
LK=THETA(J ) -A ILG(J )  
CGT-SIN.(SP)*SIN.(ALA)+COS.ISP)+COS.(ALA)*COS.(LK) 
ADSK=(SR-RDS)~(SR-RDS)+2.*SR*( lo0CGT)*RDS 

D( J)=SQRT. (ADSKI 
P @ S  R ( J ) r P H I ( J ) , T H E T A I J ) , R H O o t A L A T ( J )  

FG=400.01E+6 
FT=4.OE+8 
DF 1 0 E+4 

NC(J)=DF*ltO.+(FG/CL)*~D(J+l)-D(J)) 

RHO(J)=RDS 

ST 2 P @ S  AILC(J)rALAM(J),DT(J)rD(J) 

ccc T @ H  573, FOR J-1, 1, J.GE.4 

ST 3 P * S  N C ( J )  
DDD R @ A  

TP=ATP+DTMP 
ECC=AECC+DECC 
SMJA-SMA+DSMA*KMTFT 
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AOP.1 AAOP+DAOP ) *DTR 
RAAN= ( ARAAN+DOMN 1 *DTR 
1NC=( A I N C L - D I N C  1 *DTR 
A 3 = S M J A o P o  3 
M2M=GME/A3 
MMsSQRTo ( M 2 M  1 
El=2.*ECC-( (ECC.P.3)/4. 1 
EZ=(S.*ECC*ECC)/4.  
E 3 = (  1 3 o * ( E C C o P * 3 )  1 / 1 2 .  
E ~ ~ S M J A + F T K M * ( ~ O - E C C O P ~ ~ )  
CMC=COSo ( H A A N )  
SMGmS I No f R AAN 
CWmCOSo ( AOP 1 
S W m S  I No ( AOP 1 
C I  =COS. ( INC) 
S I = S I N . ( I N C I  
L l=CMG*CW-SMC*SW* C I 
L2=-(CMG*SW)-(SMC*CW*CI) 
M 1 =SMC*CW+CMC* SW* C I 
M 2 r -  ( SMG*SW) +CMC*CW*C I 
N 1 =SW*S I 
N2=CW*S I 

E EE T ' H  S T 4 9  FOR J=l, 1, J.CE.5 
M A M ~ M M * ( f O + ( J - l . ) * 1 2 O o ~ T P )  
M2AMs 2.*MAM 
M 3 AMs 3 *M AM 
T A ( J ) ~ M A M + E ~ * S I N . ( M A M ) + E ~ * S I N ~ ( M ~ A M ) + E ~ * S I N O ( M ~ A M ~  
T A N = T A (  J) 
RORB'E4/(lo+ECC*COSo(TAN)) 
X P S I = R O R B * C O S e ( T A N )  
XETA=RORB*SI  N o  ( T A N  1 
X I = L l * X P S I + L 2 * X E T A  
Y I f M l + X P S I + M 2 * X E T A  
Z I = N l + X P S I + N 2 * X E T A  
RPSK=X I * X  I +Y I * Y  I 

CSR ( J 1 =:FORB 
I R = Y  I / X I  

I R = Z I  / R P L  

R P L m S Q R T o ( R P S K )  

C S T H T ( J ) m A T A N o ( I R )  

CSPH( J ) = A T A N o (  I R )  

R ' A  
VE=AVE+DVF*MPHTFS 
VN=AVN+DVN*MPHTFS 
HA=AHA+DHA 
B I  E = B I E * D T R  
L I E S = L  I E S * D T R  
CBETA(  1 ) - P I E  
CLAM( l ) - L I E S  
0 s B I E  
LILIES 
BNUM=VN* F T K M  
LNUM=VE*FT KM 
K= 0 

S f  4 P ' S  T A ( J ) , C S R ( J ) , C S T H T ( J ) , C S P H ( J )  



GGG 

S T 6  

HHH 

F FF T ' H  ST5, FOR 1x0,  1, IeGE.120  
BDNM=ERADo(B)+HA*FTKM 
LDNM=BDNM*COSo(B) 
L=L+(LNUM/LDNM)  
B=B+(BNUM/BDHM) 

W'R K.E.120 
C B E T A t  2 1 =B 
CLAM( 2)=L 
T ' O  FFF 
O'R K o E 0 2 4 0  
CBETA(  3 1 =B 
CLAM( 3)=L 
T ' O  FFF 
0' E 
CBETA(  4)  =B 
CLAM( 4 1 =L 
E o  L 

ACCBT=CBETA( J) 

S T 5  K=K+1  

T ' H  S T 6 9  FOR J n l 9  1, J e G E o 5  

BDNM=ERAD.(AGCBT)+HA*FTKM 
LDNM=BDNM+COSo(AGCBT) 
I P = C S P H (  J) 
I T = C S T H T ( J )  
IVL=CLAM(J)+WIE*(TO+(~-lo)*l2Oe-TT) 
I R K =  I T- I V L  
CCT~SIN.(IP)*SIN.(AGCBT)+COS~(IP)*COS~(AGCBT)*COS~(IRK) 
IVR~(CSR(J)-BDNM)*(CSR(J)-BDNM)+~.*CSR(J)+(~O-CGT)*BDNM* 
D C T (  J l=SQRTo ( I V R )  / C L  
BADD=(VN*DCT(J)*FTKM)/BDNH 
C B E T A ( J ) = C B E T A ( J ) + B A D D  
CLAM(J)=CLAM(J)+(VE*DCT(J)*FTKM)/LDNH 
CRHO( J) =BDNM 
P 'S  CRHO(J)tCBETA(J),CLAM(J)9DCT(J) 
OB( 1 ) d o  
D B ( Z ) = C B E T A ( 2 ) - C B E T A (  1) 
D B ( 3 ) = C B E T A ( 3 ) - C B E T A ( l )  
W( 4 ) = C B E T A ( 4 ) - C B E T A (  1) 
DL( 1 ) t O o  
D L ( Z ) = C L A M ( 2 ) - C L A M ( l )  
D L ( 3 ) = C L A M ( 3 ) - C L A M ( l )  
D L ( 4 ) = C L A M ( 4 ) - C L A M ( l )  
OR( l)=O. 
O R ( 2 ) = C R H O ( Z ) - C R H O ( l )  
OR( 3) =CRHO( 3 )-CRHO( 1) 
OR ( 4 =CRHO ( 4 1 -CRHO ( 1 1 
P'S DB(1),OB(2).DB(3)tDB(4)~DL(l)~DL(2)~DL~3)~DL(4)~DR(l)~ 

RBD=Z .*CBETA ( 1 1 
K l C = l o + C O S o ( R B D )  
S B = S I N o ( R B D )  
I I b = l . + ( 3 o + K K K * K l C ) / 4 o  
DRDB=- (REP~KKK*SB* f~01 /2 ,  
T ' H  S T 7 9  FOR J=1, 1, J.GE.5 

1 DR(Z) ,DR(3 ) ,DR(4 )  

I P = C S P H (  J) 
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CLAM(l)=CLAM(l)-(VE*OCT(l)*FTKM)/LDNM 
B - C S E T A ( I 9  
L-CLAM ( 1) 
K- 0 
W t R  oABS.(DELBT)oCEo 1oOE-69 T 'O FFF 
EPS=l.OE-6/COSo ( B )  
W'R .ABSo(DELLM)eGEoEPSt  T t O  FFF 

BDNM=ERADo(B)+HA*FTKM 
LDNM=BDNM+COSe(B) 
L-L+( LNUM/LDNM 1 
BIB+( BNUM/BDMM) 

W'R KoE.120 

JJJ T ' H  S T 8 9  FOR Is01 1, IeGE.120 

ST 8 K-K+1 

C B E T A ( 2 ) - B  
CLAM( 2 1 -L 
T ' O  JJJ 
O'R KoE.240 
CBETAt  31-8 
CLAM( 3 I -L 
T c O  JJJ 
O'E 
CBETA( 4 ) - B  
CLAM( 4 1 -L 
E ' L  

RBB-CBETA( J 1 
BDNM=ERADe(RBB)+HA+FTKM 
LDNMnBDNM*COSo ( R B B )  
CBETA(J) -CBETAIJ)+(VN*DCT(J)*FTKM)/BDNM 
CLAM(J)=CLAM(J)+(VE*DCT(J)*FTKM)/LDNM 
F B E T A ( J ) - C B E T A ( J ) * R T D  
F L A M ( J ) = C L A M (  J ) * R T D  
R L A T (  J ) = A L A T (  J ) * R T D  
RLAM( J) =ALAM( J )*RTD 

LLL T ' H  S T 9 9  FOR Jp1, 1 9  JeGE.5 

ST 9 P Q S  FBETA(J ) ,FLAM(J) rRLAT(J )9RLAM(J)  
MMM T ' H  S S T l t  FOR J I l t  1 9  JaGE.5 

B K I - A L A T t J )  
BDNM=ERADo(BKI)+AHA*FTKW 
E L A T (  J 1 - f  (CBETA(  J ) - A L A T (  J) )+BDNM*KMTFT)/6080.  
ELAM(J)-((CLAM(J)-ALAM(J) ) *BDNM*COS. (BKI )+KMTFT) /6080~  
P ' S  E L A T ( J ) r E L A M (  J) 
XX2=ELAM( J ) * , E L A W (  J )+ELAT(  J ) * E L A T (  J) 
TOTERR(J)=SQRT.(XX2) 

TOO ODD 
I N T E R N A L  FUNCTION ( X I  
ENTRY TO ERADo 
AUX-2 o*X 
KlC-l.+COS ( AUX 1 

FUNCTION RETURN REP*(la+(KlC*Kl)+(K2*K2C)) 

SST 1 P ' S  TOTERR( J) 

K Z C - K l C + K l C  

END OF FUNCTION 
END OF PROGRAM 
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